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ABSTRACT

This study investigates the classification of developing and nondeveloping tropical disturbances in the
western North Pacific (WNP) through the C4.5 algorithm. A decision tree is built based on this algorithm and
can be used as a tool to predict future tropical cyclone (TC) genesis events. The results show that the max-
imum 800-hPa relative vorticity, SST, precipitation rate, divergence averaged between 1000- and 500-hPa
levels, and 300-hPa air temperature anomaly are the five most important variables for separating the de-
veloping and nondeveloping tropical disturbances. This algorithm also unravels the thresholds of the five
variables (i.e., 4.2 3 1025 s21 for maximum 800-hPa relative vorticity, 28.28C for SST, 0.1mmh21 for pre-
cipitation rate, 20.7 3 1026 s21 for vertically averaged convergence, and 0.58C for 300-hPa air temperature
anomaly). Six rules are derived from the decision tree. The classification accuracy of this decision tree is
81.7% for the 2004–10 cases. The hindcast accuracy for the 2011–13 dataset is 84.6%.

1. Introduction

Tropical cyclones (TCs) in the western North Pacific
(WNP) bring massive amounts of damage to coastal
regions each year (Zhang et al. 2009; Xiao and Xiao
2010). TC genesis has aroused extensive interest within
the academic and operational communities (Gray 1968,
1998; Emanuel 1989; Peng et al. 2012). TC genesis is
referred to as a process through which a tropical dis-
turbance rapidly develops into a warm-core, cyclonic

system with sustainable winds (Gray 1968, 1979, 1998;
Fu et al. 2007).
Over the decades, significant advancements have

been made in understanding the physical mechanisms
and processes involved in TC genesis (Gray 1968;
McBride 1981; Craig and Gray 1996; Fu et al. 2007;
Wang et al. 2007; Peng et al. 2012; Fu et al. 2012). Gray
(1968) suggested several favorable environmental pa-
rameters for TC genesis: a sufficiently deep warm ocean
layer, conditional instability through a deep atmo-
spheric layer, higher-than-normal midtropospheric rel-
ative humidity, above-normal low-level vorticity, weak
vertical wind shear over the center of the circulation,
and a location far enough from the equator. The first
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three parameters are considered to be thermodynamic
factors, while the others are dynamic. As those six pa-
rameters are usually correlated with each other, Frank
(1987) has reduced the six variables to four as follows.
Low-level vorticity and the Coriolis parameter are
combined into absolute vorticity. In addition, condi-
tional instability is deleted and average vertical motion
is added to replace relative humidity. While the ther-
modynamic conditions and Coriolis parameter are sat-
isfied over a large portion of the tropical ocean for a long
period of time, the low-level vorticity and vertical shear
vary remarkably on much smaller spatial and temporal
scales (Gray 1968; McBride 1981). It has been hypoth-
esized that tropical cyclogenesis occurs when above-
normal low-level vorticity and locally weak vertical wind
shear are fulfilled within a thermodynamically favorable
environment (Gray 1968; McBride 1981). Gray (1998)
further reported upon background environmental con-
ditions required for TC genesis and emphasized the
important roles of climatology (i.e., region, season, and
SST), synoptic flow patterns (monsoon trough or large
vorticity with small vertical wind shear), and active
mesoscale convective systems (MCSs) within a cloud
cluster system.
The processes involved in TC genesis can be sub-

divided into two consecutive stages (Briegel and Frank
1997; Ritchie and Holland 1999; Nolan 2007). The first
stage is known as the transition process from a distur-
bance to a depression: the initial formation of a rotational
circulationwith a radius of a few hundred kilometers. The
second stage is the transition from a tropical depression to
a tropical storm (Briegel and Frank 1997; Ritchie and
Holland 1999; Nolan 2007). Two crucial theories, condi-
tional instability of the second kind (CISK; Charney and
Eliassen 1964; Ooyama 1969) and wind-induced surface
heat exchange (WISHE; Emanuel 1986; Craig and Gray
1996), have been developed to interpret the self-exciting
mechanisms that are closely linked to TC formation.
CISK and WISHE can largely explain the rapid de-
velopment of disturbances in the second stage of the two-
stage TC formation.
Several indices have been widely used to quantita-

tively evaluate the potential for TC genesis (e.g., Gray
1979, 1998; Camargo et al. 2007a,b; Nolan 2007). Gray
(1979, 1998) developed an index to replicate key fea-
tures of the seasonal and spatial variability of observed
TC genesis using several environmental parameters. A
genesis potential index (GPI) has been proposed to
represent the potential of TC formation (Emanuel and
Nolan 2004) on the basis of Gray’s index (Gray 1979). A
parameter has also been developed to evaluate the po-
tential for TC formation in the North Atlantic between
Africa and the Caribbean Islands (DeMaria et al. 2001).

Camargo et al. (2007c) came up with another genesis
index constructed from composites of previous GPIs
(Gray 1979; Emanuel and Nolan 2004) with respect to
both the annual cycle and El Niño–Southern Oscillation
(ENSO). More recently, the box difference index
(BDI), which accounts for both the mean and variability
of an individual parameter, has been introduced to
identify controlling parameters measuring the differ-
ences between developing and nondeveloping distur-
bances (Peng et al. 2012; Fu et al. 2012). In their studies,
dynamic and thermodynamic variables are highlighted
for TC genesis in the WNP and the North Atlantic, re-
spectively (Fu et al. 2012; Peng et al. 2012). BDI has
been proved to be useful in examining the future trends
of TC genesis (Murakami et al. 2013).
A number of schemes have been developed to predict

TC genesis in the WNP and the North Atlantic (e.g.,
Nicholls 1979; Elsner and Schmertmann 1993; Chia and
Ropelewski 2002; Venkatesh and Mathew 2004; Fan
2010). For example, prediction schemes have been im-
plemented through discriminant analysis (Hennon and
Hobgood 2003), neural networks (Hennon et al. 2005),
and cluster analysis (Hennon et al. 2011).
In spite of those advancements, TC genesis still re-

mains a challenging problem because of the multiscale
interactions and a lack of in situ observations over open
oceans (Gray 1968, 1998; Emanuel 1989; Peng et al.
2012). The predictions of TC genesis still have large
errors in all the ocean basins, though many variables
have been suggested to be effective in predicting TC
genesis in previous studies.
The C4.5 algorithm is a useful machine learning

method and a classic decision tree algorithm, which can
deal with inherent nonlinear relationships in variables
and missing values (Quinlan 1987, 1993; Fayyad 1997;
Fayyad and Stolorz 1997). Moreover, this algorithm
enables the quantification of the relative importance of
variables and builds decision rules for prediction
(Quinlan 1987, 1993). The C4.5 algorithm has aroused
tremendous attention because the structure of its clas-
sification is visually explicit and readily interpreted
(Friedl and Brodley 1997). It is designed for classifying
samples into different groups (two classes or more)
through information theory (Quinlan 1987, 1993). It has
been successfully employed in analyses of the re-
curvature, landfall, and intensity change of TCs in the
WNP (Zhang et al. 2013a–c). In our case, the analysis of
TC genesis falls into a binary classification problem,
which classifies developing and nondeveloping tropical
disturbances using potential factors of TC genesis.
The objective of this study is to quantify the relative

importance of those potential factors for TC genesis, to
derive rules for predicting TC genesis, and to complement
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the existing BDI in analyzing TC genesis. This study also
aims at a better understanding of TC genesis and im-
provements to the techniques of TC genesis prediction.
The remainder of this paper is organized as follows.

Section 2 presents a description of the data and meth-
odology. Section 3 is used to present and interpret the
research findings as well as compare our results with
those of previous studies. A summary of the findings is
given in section 4.

2. Data and methodology

a. Data

Daily global analysis data are obtained from the Navy
Operational Global Atmospheric Prediction System
(NOGAPS). Because synoptic disturbances occur on
a scale fromhundreds to a thousand kilometers, this 18 3 18
resolution dataset should be sufficient to examine synoptic
disturbances in the tropics. Although NOGAPS pro-
vides 6-hourly analysis data (i.e., 0000, 0600, 1200, and
1800 UTC), we only utilize the 0000UTC data. The data
used in this study range from 2004 to 2013. SST and the
precipitation rate are derived from the Tropical Rainfall
MeasuringMission (TRMM)Microwave Imager (TMI).
TRMM is a jointly collaborative mission launched by
the National Aeronautics and Space Administration
(NASA) and the National Space Development Agency
of Japan (NASDA). The global tropical oceans (408S–
408N) are covered by TMI data, which are sufficient for
examining tropical synoptic disturbances.

b. Selection of disturbances

The tropical disturbances selected for this study are
confined from the equator to 308N and from 1058E to
1808. We excluded those disturbances north of 308N
because they are closely related to midlatitude weather
systems. Also, only tropical disturbances in the WNP
from June to September are investigated. The daily
850-hPa relative vorticity fields are used to extract
tropical disturbances. The criterion for selecting trop-
ical disturbances is that at least nine grid points (18 3 18
resolution) whose values of relative vorticity are equal
to or greater than 23 1025 s21 can be found in a 48 3 48
square box centered at the grid with maximum relative
vorticity. This criterion is empirically obtained by ex-
amining all the tropical disturbances in vorticity fields.
It is determined by considering that none of the prestorm
disturbances is missed and also there are not too many
disturbances.
The samples of developing disturbances are derived

from the Joint Typhoon Warning Center (JTWC). We
define day21 as 24 h prior to formation. This study only
focuses on 24–48-h TC genesis events. Therefore, we

select day21 samples for developing cases and all other
days’ samples for nondeveloping ones. As shown in
Table 1, there are a total of 5261 nondeveloping cases
and 159 developing cases for the period 2004–13 (from
June to September). There are 1746 nondeveloping
cases and 53 developing ones in the period 2011–13. The
decision tree model is trained by data in 2004–10, and
data in 2011–13 are used for hindcast validation.
After the developing and nondeveloping disturbances

are identified, we calculate the values for each variable
(Table 2). Table 2 shows the dynamic and thermodynamic
variables that potentially influence the development of
tropical disturbances into TCs. For example, the 300-hPa
temperature anomaly is a thermodynamic factor. Cor-
responding to each tropical disturbance, this variable is
derived by averaging over a square of 108 3 108 centered
at the maximum relative vorticity grid (Table 2). In
contrast, vertically averaged divergence is a dynamic
factor for TC genesis and it is calculated by averaging
over a square of 58 3 58 centered at themaximum relative
vorticity grid (Table 2). The other variables are calculated
likewise. The square box size used for calculating pa-
rameters is determined by BDI. We calculated the BDIs
of those parameters with different square box sizes. The
results show that generally smaller square box sizes for
dynamic parameters can yield larger BDIs. This suggests
that a smaller average area for dynamic parameters is
better for distinguishing developing and nondeveloping
disturbances. The size of the averaging area is also an
indication of a storm-scale parameter or an environ-
mental large-scale parameter. Previous studies (DeMaria
and Kaplan 1994; DeMaria et al. 2005) showed that
the Statistical Hurricane Intensity Prediction Scheme
(SHIPS) model is also sensitive to the size of the aver-
aging area used to calculate the predictors.

c. The C4.5 algorithm

This study aims to classify developing and non-
developing tropical disturbances. The C4.5 algorithm
uses a decision tree methodology to define rule sets that
can be used to assign input data into two ormore classes.
Therefore, it is used in this study to select variables,
thresholds, and rules for the classification of developing
and nondeveloping tropical disturbances. Awide variety
of decisions or controls come into play when running this

TABLE 1. Number of developing and nondeveloping tropical
disturbances during 2004–10, 2011–13, and 2004–13.

Period Developing Nondeveloping Total

2004–10 106 3515 3621
2011–13 53 1746 1799
2004–13 159 5261 5420
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algorithm. The detailed procedures and parameter
settings of this algorithm are provided in the appendix.

d. Cross validation

Cross validation is a common scheme used to verify
a learning model. The k-fold cross validation is de-
scribed as follows. The total dataset is separated into k
equal subsets. Training and validation are performed for
k iterations. In an individual iteration, one subset is
utilized for validation while the remaining subsets (i.e.,
k 2 1 subsets) are used for training the model. The
prediction accuracy is calculated by dividing the cor-
rectly classified samples by the number of samples in the
whole dataset. Cross validation assures that each sample
of the dataset can be used for training and testing, and in
a single iteration the training and testing samples are
independent. This thus lends high credence to the gen-
eralization capability of the obtained decision tree. This
study uses 10-fold cross validation to test the capability
of the model built by the C4.5 algorithm.

3. Results and discussion

A decision tree consisting of six rules is built through
the C4.5 algorithm to classify developing and non-
developing tropical disturbances. These rules refer to
five meteorological variables. Table 3 shows these

variables and their relative importance, which is de-
termined by the sequence in which a variable is selected
by the C4.5 algorithm. Among those variables, a dy-
namic variable (the maximum 800-hPa relative vortic-
ity) is the first selected variable, followed by two
thermodynamic variables (i.e., SST and precipitation
rate; Table 3). The remaining two variables include one
dynamic variable (vertically averaged divergence) and
one thermodynamic variable (air temperature anomaly
at 300 hPa; Table 3).
Among the six rules included in this decision tree

(Table 4), the highest accuracy is 99.5% whereas the
lowest is only 52.6%. The classification accuracy of
the decision tree is 81.7%by 10-fold cross validation. The
confusion matrix shows that 2664 (3081) nondeveloping
(developing) observations are correctly classified from
3515 (3515) samples (Table 5).
Rule 1 is stated as follows: if vor800# 4.23 1025 s21,

then the tropical disturbance will not develop into a TC.
This rule is formed by one single variable, the maximum
800-hPa relative vorticity, which is the first variable se-
lected to construct the decision tree. Therefore, this rule
highlights the importance of maximum 800-hPa relative
vorticity in TC genesis. This is consistent with the results
from Fu et al. (2012), who suggested that dynamic var-
iables play a more important role than thermodynamic
variables in TC genesis in the WNP.
Rule 2 is stated as follows: if vor800 . 4.2 3 1025 s21

and SST# 28.28C, then the tropical disturbance will not
develop into a TC. This rule involves a dynamic variable

TABLE 2. List of variables for the analysis of TC genesis.

Variable
Name in the
algorithm

300-hPa temperature anomaly (108 3 108) m_air300
Vertically averaged divergence (58 3 58) m_div1000_500
Vertically averaged du/dy (108 3 58) m_dudy1000-400
Precipitation rate (108 3 108) m_prate
950-hPa relative humidity (58 3 58) m_rhum950
Sea surface temperature (108 3 108) m_sst
Max 800-hPa relative vorticity m_vor800
925–400-hPa water vapor content (58 3 58) m_wvc925-400

TABLE 3. Variables selected to build the decision tree and their
relative importance.

Variable Full name Order

vor800 Max 800-hPa relative vorticity 1
SST Sea surface temperature 2
prate Precipitation rate 3
div1000–500 Vertically averaged divergence 4
air300 Air temperature at 300 hPa 5

TABLE 4. Descriptions and accuracies of the rules derived from the decision tree.

Rule No. Rule description Accuracy

1 If vor800 # 4.2 3 1025 s21, then the tropical disturbance will not develop into a TC (1949 2 196)/1949 5 84.6%
2 If vor800 . 4.2 3 1025 s21 and SST # 28.28C, then the tropical disturbance will not

develop into a TC
(193 2 1)/193 5 99.5%

3 If vor800 . 4.2 3 1025 s21, SST . 28.28C, and prate # 0.1mmh21, then the tropical
disturbance will not develop into a TC

(49 2 2)/49 5 95.9%

4 If vor800 . 4.2 3 1025 s21, SST . 28.28C, prate . 0.1mmh21, and div1000–500 .
20.7 3 1026 s21, then the tropical disturbance will not develop into a TC

(125 2 34)/125 5 72.8%

5 If vor800 . 4.2 3 1025 s21, SST . 28.28C, prate . 0.1mmh21, div1000–500 # 20.7 3
1026 s21, and air300 # 0.58C, then the tropical disturbance will not develop into a TC

(152 2 72)/152 5 52.6%

6 If vor800 . 4.2 3 1025 s21, SST . 28.28C, prate . 0.1mmh21, div1000–500 # 20.7 3
1026 s21, and air300 . 0.58C, then the tropical disturbance will develop into a TC

(2433 2 467)/2433 5 80.8%
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(i.e., maximum 800-hPa relative vorticity) and a ther-
modynamic variable (i.e., SST), and has the highest
classification accuracy (99.5%) among the six rules in
this decision tree. This indicates that SST is the second
most important variable for TC development. It is noted
that SST is ranked as sixth in Fu et al. (2012). SST is
a key variable for TC genesis (Gray 1968, 1979; Dare
and McBride 2011). Gray (1998) reported that a neces-
sary condition for TC genesis is that SST be greater than
268C. On a global scale, TCs form over a small tem-
perature range (i.e., 90.4% of TCs formed over the
tropical oceans where SST is between 27.58 and 30.58C;
Dare and McBride 2011). This rule suggests that even
though the maximum 800-hPa relative vorticity is higher
than 4.2 3 1025 s21, the tropical disturbance will not
develop into a TC if the SST is lower than 28.28C. This
study confirmed previous studies and further unraveled
a threshold of 28.28C, under which TCs have a low
chance to form in the WNP.
Rule 3 is stated as follows: if vor800. 4.23 1025 s21,

SST. 28.28C, and prate# 0.1mmh21, then the tropical
disturbance will not develop into a TC. This rule has
a classification accuracy of 95.9%. Precipitation rate is
the third variable used to build the decision tree fol-
lowing themaximum 800-hPa relative vorticity and SST.
It is noted that precipitation rate is ranked second in Fu
et al. (2012). Precipitation rate has also been empha-
sized to be a key thermodynamic variable for TC de-
velopment because latent heat release is a crucial factor
for the amplification of a tropical disturbance (Kuo
1965; Li et al. 2003). This study corroborates with pre-
vious studies that precipitation rate plays a crucial role
in developing TCs in the WNP.
Rule 4 is stated as follows: if vor800. 4.23 1025 s21,

SST . 28.28C, prate . 0.1mmh21, and div1000–500 .
20.7 3 1026 s21, then the tropical disturbance will not
develop into a TC. This rule consists of four variables:
maximum 800-hPa relative vorticity, SST, precipitation
rate, and average low-level divergence. This rule in-
cludes the information that weak low-level convergence
or divergence is not favorable for TC genesis. This
rule highlights the key role of strong low-level con-
vergence in TC development, which has been widely
mentioned in previous studies (Emanuel 1986; Craig
and Gray 1996).

Rule 5 is stated as follows: if vor800 . 4.2 3 1025 s21,
SST. 28.28C, prate. 0.1mmh21, div1000–500#20.73
1026 s21, and air300# 0.58C, then the tropical disturbance
will not develop into a TC. This rule includes one more
variable: an upper-level air temperature anomaly. It has
been reported in previous studies that the upper-level
warm core plays an important role in the development
and intensification of TCs (Zhang and Chen 2012; Chen
and Zhang 2013). Although the 300-hPa air temperature
anomaly is not selected in Fu et al. (2012), it is ranked
fifth in this study, indicating that the formation of an
upper-level warm core is necessary for TC development.
Rule 6 is stated as follows: if vor800. 4.23 1025 s21,

SST. 28.28C, prate. 0.1mmh21, div1000–500#20.73
1026 s21, and air300. 0.58C, then the tropical disturbance
will develop into a TC. This rule has an accuracy of
80.8% and is the only rule for the developing group of
tropical disturbances. This rule reveals the five neces-
sary conditions for a tropical disturbance to be classified
as a developing case.
To verify the accuracy of this decision tree in classi-

fying developing and nondeveloping disturbances, both
cross validation and hindcast analyses are conducted.
This decision tree has been verified via 10-fold cross
validation (Fig. 1). It did excellently in classifying de-
veloping and nondeveloping cases, with an accuracy of
81.7%. It performed even better in hindcasting 2011–13
cases. For example, 34 (1488) developing (nondeveloping)
cases are correctly predicted from 53 (1746) cases during

TABLE 5. Confusion matrix of the decision tree by 10-fold cross
validation.

Predicted

Nondeveloping Developing

Observed Nondeveloping 2664 851
Developing 434 3081

FIG. 1. The decision tree built by the C4.5 algorithm for classi-
fying developing and nondeveloping disturbances. The ellipses
contain selected variables and the numbers in the rectangles in-
dicate the predicted class label (1, developing;21, nondeveloping),
the total number of samples from both classes satisfying the con-
ditions, and the number of misclassified samples.
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2011–13 (see Table 6), which gives a hindcast accuracy
of 84.6%.
There are few studies focused on short-range TC genesis

forecasting, either from numerical models or from statis-
tical approaches. Recently, Halperin et al. (2013) evalu-
ated the forecast performance of five individual numerical
models: the Canadian Meteorological Centre’s (CMC)
Global Environmental Multiscale (GEM) model, the
European Centre for Medium-Range Weather Forecasts
(ECMWF) global model, the Global Forecast System
(GFS), the Navy Operational Global Atmospheric
Prediction System, and the Met Office global model
(UKMET), as well as the combination of these models
in theAtlantic from 2004 to 2011. For 24–48-h TC genesis
forecasts, neither the individual models nor the combi-
nation of them can have a hit rate greater than 50%.Also,
they all have high false alarm rates, similar to the hit
rates. Our results show the decision tree method pro-
duces a slightly higher hit rate (64%) and a much better
false alarm rate (15%) in the WNP. Another statistical
approach (manuscript in preparation) obtained around
a 65% hit rate in the North Atlantic for 24–48-h TC
genesis forecast. The results suggest that, for short-range
(24–48 h) TC genesis forecasts, a statistical approach is
better than the use of global model forecasts.
Gray’s parameter (Gray 1968, 1979) has been widely

accepted to develop forecast indices for TC formation.
However, most of the indices are used for evaluating the
potential of TC formation. Unlike our approach, which
only focuses on the individual tropical disturbances,
those indices are calculated at each grid point of all of
the tropical oceans. For example, DeMaria et al. (2001)
developed a TC genesis index for the tropical Atlantic.
They showed the index is useful for identifying periods
with above- and below-normal probabilities of TC gen-
esis. Emanuel and Nolan (2004) defined an index for the
TC genesis potential of global tropical oceans. The an-
nual cycle of TC occurrences is successfully derived using
this index in both the Northern and Southern Hemi-
spheres. For a statistical approach, Perrone and Lowe
(1986) utilized discriminant analysis to predict TC for-
mation. The accuracy of 24-h prediction is 72% for de-
veloping cloud clusters and 93% for nondeveloping ones
in the WNP. Ward (1995) developed a hurricane index
for evaluating intensification potential for individual
disturbances in the western South Pacific basin. SST,

vorticity, and vertical wind shear are included in this
index. He verified this index by the use of a few cases and
suggested that a threshold value of 24 can be used to
discriminate between developing and nondeveloping
disturbances. Compared to existing approaches, our
findings have shown promising results for forecasting
individual TC genesis events in the WNP.

4. Summary

TC genesis has been a mystery in the field of atmo-
spheric sciences for a long time. Numerous studies have
been carried out to reveal this mystery from a wide
spectrum of perspectives. Based on some important
parameters for TC genesis, several TC genesis potential
indices have been developed for different ocean basins
(Gray 1979, 1998; Camargo et al. 2007a,b; Nolan 2007).
Recently, the BDI has been introduced to assess the
relative importance of potential variables for TC genesis
in the North Atlantic and theWNP (Peng et al. 2012; Fu
et al. 2012; Murakami et al. 2013). The BDI has proved
to be useful in evaluating the potential of TC genesis for
current climate and global warming.
This study used the C4.5 algorithm to obtain the rel-

ative importance of potential variables, determine the
thresholds (splitting values) of each variable, and create
the rules for the classification of the developing and
nondeveloping cases. More importantly, the rules
obtained by the decision tree can be easily used for the
prediction of future TC genesis events.
The research findings are summarized as follow:

1) A decision tree is built by the C4.5 algorithm.
Maximum 800-hPa relative vorticity, SST, precipita-
tion rate, divergence averaged between 1000- and
500-hPa levels, and 300-hPa air temperature anom-
alies are selected to separate the developing and
nondeveloping tropical disturbances. This algorithm
determines the splitting values of the four variables
(e.g., 4.2 3 1025 s21 for maximum 800-hPa relative
vorticity, 28.28C for SST, 0.1mmh21 for precipita-
tion rate, 20.7 3 1026 s21 for average convergence,
and 0.58C for 300-hPa air temperature anomaly).

2) Six rules are derived by tracking the root node to
each leaf node and combining the splitting values and
variables. The decision tree has a classification accu-
racy of 81.7% for the 2004–10 dataset and hindcast
accuracy of 84.6% for 2011–13.

The thresholds obtained in this study are based on
NOGAPS data. It should be noted that these thresholds
are dataset dependent. This is not surprising since dif-
ferent biases exist in different model analysis datasets.
In this study, we only focus on theWNP.But it is obvious

TABLE 6. Confusion matrix of the hindcast for the period 2011–13.

Predicted

Nondeveloping Developing

Observed Nondeveloping 1488 258
Developing 19 34
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that this method can be used to build decision trees for
all basins. According to previous studies, the charac-
teristics of tropical disturbances, as well as the envi-
ronments in which they are embedded, are different
between the WNP and the North Atlantic (Fu et al.
2012; Peng et al. 2012). The decision trees for different
basins are expected to be quite different. The applica-
tion of this method to the other basins belongs to our
future studies and will be later reported.
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APPENDIX

The C4.5 Algorithm for Building Decision Trees

Adecision tree consists of a root node, a leaf node, and
a branch. A leaf node is a terminal of the decision tree,
indicating the value of the target attribute (class). A root
node is defined as the topmost decision node in a tree that
corresponds to the best predictor. Each branch of the
decision tree represents a possible decision or occurrence.
A decision tree traverses a tree of questions depending on

the answer of each question until a leaf node is reached,
at which point the leaf node states the classification of
the input. In the processes of classification, a dataset is
sequentially separated according to the decision frame-
work, and a class label (e.g., 1 and 21 for binary classi-
fication) is assigned to each sample according to the label
of the leaf node to which this sample belongs. The C4.5
algorithm, based on information theory, is a key member
of the decision tree family (Quinlan 1987, 1993).

a. Parameter settings

The C4.5 algorithm is implemented in Weka 3.6.2,
which is a collection of machine learning algorithms for
data mining tasks and an open-source software (available
online at http://www.cs.waikato.ac.nz/ml/weka/index.html).
The parameters are set as follows: minimum leaf size, 135;
confidence factor, 0.25; binary split, true; debug, false;
unpruned, false; reducedErrorPruning, true; numFolds, 3;
uselaplace, false; seed, 1; subtreeRaising, true; and
saveInstanceData, false.

b. Setting minimum leaf size

The parameter minimum leaf size indicates the min-
imum number of samples a leaf node should hold in
building a decision tree. The smaller the minimum leaf
size is, the larger the tree size tends to be. However,
a larger tree is more likely a result of overfitting of the
training samples and usually results in unsatisfactory
prediction accuracy for future events. On the other
hand, a smaller tree cannot grab sufficient information
from the training samples (Hastie et al. 2001). There-
fore, it is always a challenging issue to decide the optimal
minimum leaf size. A common strategy is to prune nodes
that convey little information from the training samples.

FIG. A1. The classification accuracy of decision trees when the min leaf size varies from 60 to 225. The black circles
mark the highest classification accuracy and the corresponding number of leaves on the decision tree.
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Reduced error pruning aims at making a better gener-
alization (prediction capability) of the decision tree
(Quinlan 1987). Because higher accuracy represents
a better generalization of new samples, this procedure
prunes nodes and branches with lower prediction accu-
racy. Of the total sample size, 5% is usually used as the
minimum leaf size (DeLisle and Dixon 2004).
In this study, the minimum leaf size varies from 60 to

225. The prediction accuracy peaks at 84.6% when the
minimum leaf size is 135 (Fig. A1). Therefore, the mini-
mum leaf size is set as 135. It is noted that there are two
nodes whose numbers of samples are less than 135. Such
nodes should be caused by the reduced error pruning
applied to the decision tree because some branches of
these nodes with low generalization have been pruned.

c. Resampling

A dataset is said to be imbalanced if the sample
from one class is a higher number than the other
(Longadge et al. 2013). Imbalanced samples tend to
bias the classification results produced by the C4.5
algorithm (Chawla 2003; Estabrooks et al. 2004; Han
et al. 2005). Therefore, resampling is adopted to avoid
biased results. This study employs the synthetic mi-
nority oversampling technique (SMOTE; Chawla
2003) to oversample the cases in the ‘‘developing’’
group (i.e., the minority class).
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